If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-5.2k+1=0
a = 1; b = -5.2; c = +1;
Δ = b2-4ac
Δ = -5.22-4·1·1
Δ = 23.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5.2)-\sqrt{23.04}}{2*1}=\frac{5.2-\sqrt{23.04}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5.2)+\sqrt{23.04}}{2*1}=\frac{5.2+\sqrt{23.04}}{2} $
| 2n+2-7n=37 | | 3x+8(2x-6)=X-11x | | 25x-10=32x+4 | | -7+u=6 | | -3/4x=9/7 | | 6(10)^(3x)=20 | | -7+4=-h+9 | | -1.2=-0.2r | | 9w^2=-64 | | 2x-23+47x-121x(3-0)=9 | | (2x-8)+(x-2)=180 | | (X+1)^2(2X-x^2)=0 | | 15x-4=14x+4 | | -51/4x=-21 | | 4z^2+4z–9=0 | | 4z2+4z–9=0 | | 13+14=3×f;f= | | 1/2x=-81/4 | | 37+s=80÷2;s= | | 7x-7=2x1 | | 420÷d=30;d | | 420÷d=30;d= | | -61/2z=-13 | | 2x-4(x+3)=5x+9 | | n/18=1/6 | | 5x+9+104=90 | | 6n+40=76 | | -16=-4t | | 3x-1=65 | | 4(5-13)=y-4 | | 3x-1+77=90 | | -0.6m=6.72 |